Abstract
The synthesis of side-chain 13C-labeled geranylgeranyl-4-hydroxybenzoic acids and geranylgeranyl-3,4-dihydroxybenzoic
acids is described. The synthesis starts from O-protected methyl hydroxyiodobenzoates, which are transformed into Grignard reagents
by low-temperature iodine-magnesium exchange according to Knochel’s procedure. Copper
catalyzed cross-coupling with labeled geranylgeranyl bromide followed by deprotection
affords the products with good yields and full retention of stereochemistry.
Key words
allylations - copper - coupling - Grignard reactions - organometallic reagents
References
<A NAME="RZ01205SS-1">1</A>
New address: M. Lang, 4SC AG, Am Klopferspitz 19a, 82152 Martinsried, Germany.
<A NAME="RZ01205SS-2">2</A>
Claisen L.
Kremers F.
Roth F.
Tietze E.
Justus Liebigs Ann. Chem.
1925,
442:
210
<A NAME="RZ01205SS-3A">3a</A>
Kaczka EA.
Shunk CH.
Richter JW.
Wolf FJ.
Gasser MM.
Folkers K.
J. Am. Chem. Soc.
1956,
78:
4125
<A NAME="RZ01205SS-3B">3b</A>
Inouye H.
Ueda S.
Inoue K.
Matsumura H.
Phytochemistry
1979,
18:
1301
<A NAME="RZ01205SS-3C">3c</A>
Blunt SB.
Chen T.-B.
Wiemer DF.
J. Nat. Prod.
1998,
61:
1400
<A NAME="RZ01205SS-3D">3d</A>
Xie Z.
Hu Y.
Li Y.
J. Chem. Res., Synop.
2002,
293
<A NAME="RZ01205SS-3E">3e</A>
Tanada Y.
Mori K.
Eur. J. Org. Chem.
2003,
848
<A NAME="RZ01205SS-4A">4a</A>
Wessjohann L.
Sontag B.
Dessoy M.-A. In
Bioorganic Chemistry
Diederichsen U.
Lindhorst TK.
Westermann B.
Wessjohann LA.
Wiley-VCH;
Weinheim:
1999.
p.79
<A NAME="RZ01205SS-4B">4b</A>
Wessjohann L.
Sontag B.
Angew. Chem. Int. Ed.
1996,
35:
1697 ; Angew. Chem. 1996, 108, 1821
<A NAME="RZ01205SS-5">5</A>
Shepherd JA.
Poon WW.
Myles DC.
Clarke CF.
Tetrahedron Lett.
1996,
37:
2395
<A NAME="RZ01205SS-6A">6a</A>
Nicklin S.
Robson MW.
Appl. Organomet. Chem.
1988,
2:
487
<A NAME="RZ01205SS-6B">6b</A>
Fouquet E.
Pereyre M.
Rayez J.-C.
Rayez M.-T.
Roulet T.
C. R. Acad. Sci., Ser. IIc
2001,
641
<A NAME="RZ01205SS-7">7</A> Reaction conditions: organotin reagent and electrophile (1:1 stoichiometric ratio),
Pd(dba)2 (2.5 mol%), NEt4Cl (10 mol%), THF, 50 °C, 18 h. Yields of coupling products: 60% to 70%. Residues
of organotin compounds could not be removed satisfactorily despite the fact that fluoride
precipitation was applied prior to chromatography:
Leibner JE.
Jacobus J.
J. Org. Chem.
1979,
44:
449
Loss of sterochemistry in reactions that involve η3-allyl palladium complexes:
<A NAME="RZ01205SS-8A">8a</A>
Castano AM.
Echavarren AM.
Tetrahedron Lett.
1996,
37:
6587
<A NAME="RZ01205SS-8B">8b</A>
Takanashi S.
Mori K.
Lieb. Ann./Recl.
1997,
825
<A NAME="RZ01205SS-8C">8c</A>
Takanashi S.
Mori K.
Lieb. Ann./Recl.
1997,
1081
<A NAME="RZ01205SS-9">9</A> Monoorganostannanes were developed which allow Stille-type reactions leading
to products free of organotin contamination. In a reaction of prenyl monoorganostannane
with an aryl iodide, however, exclusively SN2′ substitution occurred. See:
Fouquet E.
Pereyre M.
Rodriguez AL.
J. Org. Chem.
1997,
62:
5242
Determination of double bond stereochemistry within polyprenyl chains by NMR spectroscopy:
<A NAME="RZ01205SS-10A">10a</A>
Tanaka Y.
Sato H.
Kageyu A.
Polymer
1982,
23 (Suppl.):
1087
<A NAME="RZ01205SS-10B">10b</A>
Shashkov AS.
Grigor’eva NY.
Avrutov IM.
Semenovskii AV.
Odinokov VN.
Ignatyuk VK.
Tolstikov GA.
Izv. Akad. Nauk SSSR, Ser. Khim.
1979,
388 ; Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1979, 28, 359
<A NAME="RZ01205SS-11A">11a</A>
Treadwell EM.
Cermak SC.
Wiemer DF.
J. Org. Chem.
1999,
64:
8718
<A NAME="RZ01205SS-11B">11b</A>
Falck JR.
Reddy KK.
Chandrasekhar S.
Tetrahedron Lett.
1997,
38:
5245
<A NAME="RZ01205SS-12">12</A>
Nakano J.
Uchida K.
Fujimoto Y.
Heterocycles
1989,
29:
427
<A NAME="RZ01205SS-13">13</A>
Knochel P.
Dohle W.
Gommermann N.
Kneisel FF.
Kopp F.
Korn T.
Sapountzis I.
Vu VA.
Angew. Chem. Int. Ed.
2003,
42:
4302 ; Angew. Chem. 2003, 115, 4438; and references cited therein
<A NAME="RZ01205SS-14">14</A>
Kometani T.
Watt DS.
Ji T.
Tetrahedron Lett.
1985,
26:
2043
<A NAME="RZ01205SS-15A">15a</A>
Stork G.
Takahashi T.
J. Am. Chem. Soc.
1977,
99:
1275
<A NAME="RZ01205SS-15B">15b</A> A 6 M solution of MOMCl in EtOAc was prepared according to:
Amato JS.
Karady S.
Sletzinger M.
Weinstock LM.
Synthesis
1979,
970
<A NAME="RZ01205SS-15C">15c</A>
Linderman RJ.
Jaber M.
Griedel BD.
J. Org. Chem.
1994,
59:
6499
<A NAME="RZ01205SS-16">16</A>
Anhoury M.
Crooy P.
De Neys R.
Eliaers J.
J. Chem. Soc., Perkin Trans. 1
1974,
1015
<A NAME="RZ01205SS-17">17</A>
Yamada S.
Morizono D.
Yamamoto K.
Tetrahedron Lett.
1992,
33:
4329
<A NAME="RZ01205SS-18A">18a</A>
Comins DL.
Brown JD.
J. Org. Chem.
1984,
49:
1078
<A NAME="RZ01205SS-18B">18b</A>
Comins DL.
Synlett
1992,
615
<A NAME="RZ01205SS-19A">19a</A>
Winkle MR.
Ronald RC.
J. Org. Chem.
1982,
47:
2101
<A NAME="RZ01205SS-19B">19b</A>
Ronald RC.
Winkle MR.
Tetrahedron Lett.
1983,
39:
2031
<A NAME="RZ01205SS-19C">19c</A> For a general review on directed ortho metalation, see:
Snieckus V.
Chem. Rev.
1990,
90:
879
<A NAME="RZ01205SS-20">20</A>
Aitken DJ.
Faure S.
Roche S.
Tetrahedron Lett.
2003,
44:
8827
<A NAME="RZ01205SS-21A">21a</A>
Bal SB.
Childers WE.
Pinnick HW.
Tetrahedron
1981,
37:
2091
<A NAME="RZ01205SS-21B">21b</A>
Halcomb RL.
Boyer SH.
Wittman MD.
Olson SH.
Denhart DJ.
Liu KKC.
Danishefsky SJ.
J. Am. Chem. Soc.
1995,
117:
5720
<A NAME="RZ01205SS-22">22</A>
Ono N.
Yamada T.
Saito T.
Tanaka K.
Kaji A.
Bull. Chem. Soc. Jpn.
1978,
51:
2401
<A NAME="RZ01205SS-23">23</A>
Eis K.
Schmalz H.-G.
Synthesis
1997,
202
<A NAME="RZ01205SS-24">24</A>
Leete E.
Bjorklund JA.
Couladis MM.
Kim SH.
J. Am. Chem. Soc.
1991,
113:
9286
<A NAME="RZ01205SS-25A">25a</A>
Graebe C.
Justus Liebigs Ann. Chem.
1905,
340:
244
<A NAME="RZ01205SS-25B">25b</A>
Beyer J.
Lang-Fugmann S.
Mühlbauer A.
Steglich W.
Synthesis
1998,
1047
<A NAME="RZ01205SS-25C">25c</A>
Lang M.
Lang-Fugmann S.
Steglich W.
Org. Synth.
2001,
78:
113
<A NAME="RZ01205SS-26A">26a</A>
Axelrod EH.
Milne GM.
van Tamelen EE.
J. Am. Chem. Soc.
1970,
92:
2139
<A NAME="RZ01205SS-26B">26b</A>
See ref. 8b
<A NAME="RZ01205SS-26C">26c</A>
Takagi R.
Sasaoka A.
Nishitani H.
Kojima S.
Hiraga Y.
Ohkata K.
J. Chem. Soc., Perkin Trans. 1
1998,
925
<A NAME="RZ01205SS-27">27</A>
Isler O.
Rüegg R.
Chopard-dit-Jean L.
Wagner H.
Bernhard K.
Helv. Chim. Acta
1956,
39:
897
<A NAME="RZ01205SS-28">28</A>
On addition of MeOH, work-up and flash chromatography, the corresponding dehalogenated
compounds were isolated in nearly quantitative yields.
<A NAME="RZ01205SS-29">29</A>
Tamura M.
Kochi J.
Synthesis
1971,
303
<A NAME="RZ01205SS-30A">30a</A>
Bertz SH.
Fairchild EH. In Encyclopedia of Reagents for Organic Synthesis
Vol. 2:
Paquette LA.
John Wiley & Sons;
Chichester, New York:
1995.
p.1324
<A NAME="RZ01205SS-30B">30b</A>
Thompson AS. In Encyclopedia of Reagents for Organic Synthesis
Vol. 3:
Paquette LA.
John Wiley & Sons;
Chichester, New York:
1995.
p.1957
<A NAME="RZ01205SS-30C">30c</A>
Johnson DK.
Donohoe J.
Kang J.
Synth. Commun.
1994,
24:
1557 ; and references cited therein
<A NAME="RZ01205SS-30D">30d</A>
Bäckvall J.-E.
Sellén M.
Grant B.
J. Am. Chem. Soc.
1990,
112:
6615
<A NAME="RZ01205SS-30E">30e</A>
Bäckvall J.-E.
Persson ESM.
Bombrun A.
J. Org. Chem.
1994,
59:
4126
<A NAME="RZ01205SS-30F">30f</A>
Suzuki S.
Shiono M.
Fujita Y.
Synthesis
1983,
804
<A NAME="RZ01205SS-31">31</A>
Fouquet G.
Schlosser M.
Angew. Chem., Int. Ed. Engl.
1974,
13:
82 ; Angew. Chem. 1974, 86, 50
<A NAME="RZ01205SS-32">32</A>
Schlosser M.
Bossert H.
Tetrahedron
1991,
47:
6287
<A NAME="RZ01205SS-33">33</A> A 0.2 M solution of Li2CuCl3 was prepared by dissolving dry LiCl (2 mmol) and CuCl (1 mmol) in anhyd THF (5 mL)
under argon. The solution is only storable for a few hours. The CuCl used can be purchased
in 99.995% purity from Aldrich, or purified according to:
Mason RB.
Mathews JH.
J. Phys. Chem.
1925,
29:
1379
<A NAME="RZ01205SS-34">34</A>
HCl was generated by alcoholysis of AcCl in i-PrOH.
<A NAME="RZ01205SS-35A">35a</A>
Brieger G.
J. Am. Chem. Soc.
1963,
85:
3783
<A NAME="RZ01205SS-35B">35b</A>
Julia M.
Roy P.
Tetrahedron
1986,
42:
4991
<A NAME="RZ01205SS-36A">36a</A>
Mühlbauer A.
Beyer J.
Steglich W.
Tetrahedron Lett.
1998,
39:
5167
<A NAME="RZ01205SS-36B">36b</A>
Gill M.
Steglich W.
Prog. Chem. Org. Nat. Prod.
1987,
51:
98
Recent reviews:
<A NAME="RZ01205SS-37A">37a</A>
Kawamukai M.
J. Biosci. Bioeng.
2002,
94:
511
<A NAME="RZ01205SS-37B">37b</A>
Meganathan R.
Vitam. Horm.
2001,
61:
173
<A NAME="RZ01205SS-37C">37c</A>
Szkopinska A.
Acta Biochim. Pol.
2000,
47:
469
For 3-geranyl-4-hydroxybenzoic acid:
<A NAME="RZ01205SS-38A">38a</A>
Yazaki K.
Fukui H.
Tabata M.
Chem. Pharm. Bull.
1986,
34:
2290
<A NAME="RZ01205SS-38B">38b</A>
Seeram NP.
Jacobs H.
McLean S.
Reynolds WF.
Phytochemistry
1996,
43:
863
<A NAME="RZ01205SS-38C">38c</A>
Baldoqui DC.
Kato MJ.
Cavalheiro AJ.
Bolzani Vda S.
Young MCM.
Furlan M.
Phytochemistry
1999,
51:
899
For 3-farnesyl-4- hydroxybenzoic acid:
<A NAME="RZ01205SS-38D">38d</A>
Ampofo SA.
Roussis V.
Wiemer DF.
Phytochemistry
1987,
26:
2367
<A NAME="RZ01205SS-38E">38e</A>
Maxwell A.
Rampersad D.
J. Nat. Prod.
1988,
51:
370
For 3-geranylgeranyl-4-hydroxybenzoic acid:
<A NAME="RZ01205SS-38F">38f</A>
Cimino G.
De Stefano S.
Minale L.
Experientia
1972,
28:
1401
<A NAME="RZ01205SS-38G">38g</A>
Lütke-Brinkhaus F.
Liedvogel B.
Kleinig H.
Eur. J. Biochem.
1984,
537
<A NAME="RZ01205SS-38H">38h</A>
Perez Baz J.
Canedo LM.
Tapiolas D.
J. Nat. Prod.
1996,
59:
960
<A NAME="RZ01205SS-38I">38i</A>
Kang H.-C.
Yun B.-S.
Yu H.
Yoo I.-D.
Sanop Misaengmul Hakhoechi
2001,
29:
149 ; Chem. Abstr. 2002, 136, 275806
For 3-geranylgeranyl-4,5-dihydroxybenzoic acid and 2-geranylgeranyl-3,4-dihydroxybenzoic
acid:
<A NAME="RZ01205SS-38J">38j</A>
Maxwell A.
Rampersad D.
J. Nat. Prod.
1989,
52:
614
<A NAME="RZ01205SS-38K">38k</A>
Maxwell A.
Rampersad D.
J. Nat. Prod.
1989,
52:
891
<A NAME="RZ01205SS-39A">39a</A>
Kofron WG.
Baclawski LM.
J. Org. Chem.
1976,
41:
1879
<A NAME="RZ01205SS-39B">39b</A> 4-Biphenylmethanol may also be used, see:
Juaristi E.
Martínez-Richa A.
García-Rivera A.
Cruz-Sánchez JS.
J. Org. Chem.
1983,
48:
2603
<A NAME="RZ01205SS-40">40</A>
Methyl 4-hydroxy-3,5-diiodobenzoate was separated from 1 by flash chromatography. Non-iodinated material could be removed neither from 1 nor from 2. Thus, a mixture of 2 and methyl 4-(methoxymethoxy)benzoate was employed in the cross coupling reactions.
<A NAME="RZ01205SS-41">41</A>
Edwards RL.
Wilson DV.
J. Chem. Soc.
1961,
5003
<A NAME="RZ01205SS-42">42</A>
Impurity: 2-iodo-4,5-bis(methoxymethoxy)benzaldehyde.
<A NAME="RZ01205SS-43">43</A>
Chaudhary SK.
Hernandez O.
Tetrahedron Lett.
1979,
20:
99
<A NAME="RZ01205SS-44">44</A> Determination of the concentration: In a dried and argon-flushed Schlenk flask
with gas inlet and rubber septum, an exactly known amount of menthol (approx. 0.8
mmol) and a few mg of 1,10-phenanthroline were dissolved in anhyd THF (2.5 mL). The
i-PrMgBr solution was added dropwise until blue color appeared. See:
Watson SC.
Eastham JF.
J. Organomet. Chem.
1967,
9:
165
<A NAME="RZ01205SS-45">45</A>
IR data of the corresponding unlabeled compound.